I // Fig. 8.14: fig08_14.cpp

2 // sizeof operator used to determine standard data type sizes.
3 #include <iostream>

4 using namespace std;

5

6 int mainQ)

7T {

8 char c; // variable of type char

9 short s; // variable of type short

10 int i; // variable of type int

11 long 1; // variable of type long

12 long 11; // variable of type long long

13 float f; // variable of type float

14 double d; // variable of type double

15 long double 1d; // variable of type Tong double
16 int arrayl[ 1; // built-in array of 1int

17 int *ptr = array; // variable of type int *

18

Fig. 8.14 | sizeof operator used to determine standard data type sizes. (Part |
of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



19 cout << << sizeof c

20 << << sizeof( char )

21 << << sizeof s

22 << << sizeof( short )

23 << << sizeof i

24 << << sizeof( int )

25 << << sizeof 1

26 << << sizeof( long )

27 << << sizeof 11

28 << << sizeof( long long )
29 << << sizeof f

30 << << sizeof( float )

31 << << sizeof d

32 << << sizeof( double )

33 << << sizeof 1d

34 << << sizeof( long double )
35 << << sizeof array

36 << << sizeof ptr << endl;

37 } // end main

Fig. 8.14 | sizeof operator used to determine standard data type sizes. (Part 2
of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



sizeof c =1 sizeof(char) =1

sizeof s = 2 sizeof(short) = 2
sizeof i = 4 sizeof(int) = 4

sizeof 1 = 4 sizeof(long) = 4

sizeof 11 = 8 sizeof(long long) = 8
sizeof f = 4 sizeof(float) = 4
sizeof d = 8 sizeof(double) = 8
sizeof 1d = 8 sizeof(long double) = 8
sizeof array = 80

sizeof ptr = 4

Fig. 8.14 | sizeof operator used to determine standard data type sizes. (Part 3
of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



Portability Tip 8.1

The number of bytes used to store a particular data type
may vary among systems. When writing programs that
depend on data type sizes, always use sizeof to
determine the number of bytes used to store the data

types.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



8.7 si1zeof Operator (cont.)

« Operator s1zeof can be applied to any
expression or type name.

« When s1zeof is applied to a variable name
(which is not a built-in array’s name) or other
expression, the number of bytes used to store
the specific type of the expression is returned.

 The parentheses used with s1zeof are
required onlyif a type name Is supplied as Its
operand.



8.8 Pointer Expressions and Pointer
Arithmetic

 Pointers are valid operands In arithmetic expressions,
assignment expressions and comparison expressions.

« C++ enables pointer arithmetic—a few arithmetic
operations may be performed on pointers:

— Increment (++)

— decremented (--)

— an integer may be added to a pointer (+ or +=)

— an integer may be subtracted from a pointer (- or -=)

— one pointer may be subtracted from another of the same
type—this particular operation is appropriate only for two
pointers that point to elements of the same built-in array

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



_ Portability Tip 8.2
& Most computers today have four-byte or eight-byte
integers. Because the results of pointer arithmetic
depend on the size of the objects a pointer points to,
pointer arithmetic is machine dependent.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



8.8 Pointer Expressions and Pointer
Arithmetic

 Assume that 1nt v[5] has been declared

and that its first element is at memory location
3000.

« Assume that pointer vPtr has been initialized
to pointto v[0] (i.e., the value of vPtr is
3000).

 Figure 8.15 diagrams this situation for a
machine with four-byte integers. Variable
VvPtr can be initialized to point to v with
either of the following statements:



location
3000 3004 3008 3012 3016

v[0] v[1] wv[2] v[3] v[4]

pointer variable vPtr

Fig. 8.15 | Built-in array v and a pointer variable int *vPtr that points to
V.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



8.8 Pointer Expressions and Pointer
Arithmetic (cont.)

Adding Integers to and Subtracting Integers from Pointers

* In conventional arithmetic, the addition 3000
+ 2 yields the value 3002.

— This iIs normally not the case with pointer
arithmetic.

— When an integer is added to, or subtracted from, a
pointer, the pointer is not simply incremented or
decremented by that integer, but by that integer
times the size of the object to which the pointer
refers.

— The number of bytes depenids'on the object’s data



8.8 Pointer Expressions and Pointer
Arithmetic (cont.)

For example, the statement

VPtr += 2;
would produce 3008 (from the calculation
3000 + 2 * 4),assuming that an int is
stored Iin four bytes of memory.

In the built-in array v, vPtr would now point
tov[2] (Fig. 8.16).

If an integer Is stored in eight bytes of
memory, then the preceding calculation would
result in memory focation 3016 (3000 + 2



location
3000 3004 3008 3012 3016

v[0] v[1] v[2] v[3] v[4]

!

pointer variable vPtr

Fig. 8.16 | Pointer vPtr after pointer arithmetic.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



Error-Prevention Tip 8.5

There’s no bounds checking on pointer arithmetic. You
must ensure that every pointer arithmetic operation that
adds an integer to or subtracts an integer from a pointer
results in a pointer that references an element within the
built-in array’s bounds.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



8.8 Pointer Expressions and Pointer
Arithmetic (cont.)

Subtracting Pointers

 Pointer variables pointing to the sarme built-in
array may be subtracted from one another.

* For example, If vPtr contains the address
3000 and v2Ptr contains the address 3008,

the statement
X = VZ2Ptr - vPtr;

« would assign to x the number of built-in array
elements from vPtr to v2Ptr—in this case,

2 ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



Common Programming Error 8.4

Subtracting or comparing two pointers that do not refer
to elements of the same built-in array is a logic error.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



