
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.7 sizeof Operator (cont.)

• Operator sizeof can be applied to any
expression or type name.

• When sizeof is applied to a variable name
(which is not a built-in array’s name) or other
expression, the number of bytes used to store
the specific type of the expression is returned.

• The parentheses used with sizeof are
required only if a type name is supplied as its
operand.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.8 Pointer Expressions and Pointer

Arithmetic

• Pointers are valid operands in arithmetic expressions,
assignment expressions and comparison expressions.

• C++ enables pointer arithmetic—a few arithmetic
operations may be performed on pointers:

– increment (++)

– decremented (--)

– an integer may be added to a pointer (+ or +=)

– an integer may be subtracted from a pointer (- or -=)

– one pointer may be subtracted from another of the same
type—this particular operation is appropriate only for two
pointers that point to elements of the same built-in array

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.8 Pointer Expressions and Pointer

Arithmetic

• Assume that int v[5] has been declared

and that its first element is at memory location

3000.

• Assume that pointer vPtr has been initialized

to point to v[0] (i.e., the value of vPtr is

3000).

• Figure 8.15 diagrams this situation for a

machine with four-byte integers. Variable

vPtr can be initialized to point to v with

either of the following statements:
int *vPtr = v;

int *vPtr = &v[0];

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.8 Pointer Expressions and Pointer

Arithmetic (cont.)

Adding Integers to and Subtracting Integers from Pointers

• In conventional arithmetic, the addition 3000

+ 2 yields the value 3002.

– This is normally not the case with pointer

arithmetic.

– When an integer is added to, or subtracted from, a

pointer, the pointer is not simply incremented or

decremented by that integer, but by that integer

times the size of the object to which the pointer

refers.

– The number of bytes depends on the object’s data

type.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.8 Pointer Expressions and Pointer

Arithmetic (cont.)

• For example, the statement
vPtr += 2;

• would produce 3008 (from the calculation

3000 + 2 * 4), assuming that an int is

stored in four bytes of memory.

• In the built-in array v, vPtr would now point

to v[2] (Fig. 8.16).

• If an integer is stored in eight bytes of

memory, then the preceding calculation would

result in memory location 3016 (3000 + 2
* 8).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.8 Pointer Expressions and Pointer

Arithmetic (cont.)

Subtracting Pointers

• Pointer variables pointing to the same built-in

array may be subtracted from one another.

• For example, if vPtr contains the address

3000 and v2Ptr contains the address 3008,

the statement
x = v2Ptr - vPtr;

• would assign to x the number of built-in array

elements from vPtr to v2Ptr—in this case,

2.

• Pointer arithmetic is meaningful only on a

pointer that points to a built-in array.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

